/*! * \file RegionLA915.c * * \brief Region implementation for LA915 * * \copyright Revised BSD License, see section \ref LICENSE. * * \code * ______ _ * / _____) _ | | * ( (____ _____ ____ _| |_ _____ ____| |__ * \____ \| ___ | (_ _) ___ |/ ___) _ \ * _____) ) ____| | | || |_| ____( (___| | | | * (______/|_____)_|_|_| \__)_____)\____)_| |_| * (C)2013-2017 Semtech * * ___ _____ _ ___ _ _____ ___ ___ ___ ___ * / __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __| * \__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _| * |___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___| * embedded.connectivity.solutions=============== * * \endcode * * \author Miguel Luis ( Semtech ) * * \author Gregory Cristian ( Semtech ) * * \author Daniel Jaeckle ( STACKFORCE ) */ #include "utilities.h" #include "RegionCommon.h" #include "RegionLA915.h" // Definitions #define CHANNELS_MASK_SIZE 6 // A mask to select only valid 500KHz channels #define CHANNELS_MASK_500KHZ_MASK 0x00FF /*! * Region specific context */ typedef struct sRegionLA915NvmCtx { /*! * LoRaMAC channels */ ChannelParams_t Channels[ LA915_MAX_NB_CHANNELS ]; /*! * LoRaMac bands */ Band_t Bands[ LA915_MAX_NB_BANDS ]; /*! * LoRaMac channels mask */ uint16_t ChannelsMask[ CHANNELS_MASK_SIZE ]; /*! * LoRaMac channels remaining */ uint16_t ChannelsMaskRemaining[CHANNELS_MASK_SIZE]; /*! * LoRaMac channels default mask */ uint16_t ChannelsDefaultMask[ CHANNELS_MASK_SIZE ]; }RegionLA915NvmCtx_t; /* * Non-volatile module context. */ static RegionLA915NvmCtx_t NvmCtx; // Static functions static int8_t GetNextLowerTxDr( int8_t dr, int8_t minDr ) { uint8_t nextLowerDr = 0; if( dr == minDr ) { nextLowerDr = minDr; } else if( dr == DR_8 ) { // DR_7 is not allowed nextLowerDr = DR_6; } else { nextLowerDr = dr - 1; } return nextLowerDr; } static uint32_t GetBandwidth( uint32_t drIndex ) { switch( BandwidthsLA915[drIndex] ) { default: case 125000: return 0; case 250000: return 1; case 500000: return 2; } } static int8_t LimitTxPower( int8_t txPower, int8_t maxBandTxPower, int8_t datarate, uint16_t* channelsMask ) { int8_t txPowerResult = txPower; // Limit tx power to the band max txPowerResult = MAX( txPower, maxBandTxPower ); return txPowerResult; } static bool VerifyRfFreq( uint32_t freq ) { // Check radio driver support if( Radio.CheckRfFrequency( freq ) == false ) { return false; } // Rx frequencies if( ( freq < LA915_FIRST_RX1_CHANNEL ) || ( freq > LA915_LAST_RX1_CHANNEL ) || ( ( ( freq - ( uint32_t ) LA915_FIRST_RX1_CHANNEL ) % ( uint32_t ) LA915_STEPWIDTH_RX1_CHANNEL ) != 0 ) ) { return false; } // Tx frequencies for 125kHz // Also includes the range for 500kHz channels if( ( freq < 915200000 ) || ( freq > 927800000 ) ) { return false; } return true; } static uint8_t CountNbOfEnabledChannels( uint8_t datarate, uint16_t* channelsMask, ChannelParams_t* channels, Band_t* bands, uint8_t* enabledChannels, uint8_t* delayTx ) { uint8_t nbEnabledChannels = 0; uint8_t delayTransmission = 0; for( uint8_t i = 0, k = 0; i < LA915_MAX_NB_CHANNELS; i += 16, k++ ) { for( uint8_t j = 0; j < 16; j++ ) { if( ( channelsMask[k] & ( 1 << j ) ) != 0 ) { if( channels[i + j].Frequency == 0 ) { // Check if the channel is enabled continue; } if( RegionCommonValueInRange( datarate, channels[i + j].DrRange.Fields.Min, channels[i + j].DrRange.Fields.Max ) == false ) { // Check if the current channel selection supports the given datarate continue; } if( bands[channels[i + j].Band].TimeOff > 0 ) { // Check if the band is available for transmission delayTransmission++; continue; } enabledChannels[nbEnabledChannels++] = i + j; } } } *delayTx = delayTransmission; return nbEnabledChannels; } PhyParam_t RegionLA915GetPhyParam( GetPhyParams_t* getPhy ) { PhyParam_t phyParam = { 0 }; switch( getPhy->Attribute ) { case PHY_MIN_RX_DR: { if( getPhy->DownlinkDwellTime == 0) { phyParam.Value = LA915_RX_MIN_DATARATE; } else { phyParam.Value = LA915_DWELL_LIMIT_DATARATE; } break; } case PHY_MIN_TX_DR: { if( getPhy->UplinkDwellTime == 0) { phyParam.Value = LA915_TX_MIN_DATARATE; } else { phyParam.Value = LA915_DWELL_LIMIT_DATARATE; } break; } case PHY_DEF_TX_DR: { phyParam.Value = LA915_DEFAULT_DATARATE; break; } case PHY_NEXT_LOWER_TX_DR: { if( getPhy->UplinkDwellTime == 0) { phyParam.Value = GetNextLowerTxDr( getPhy->Datarate, LA915_TX_MIN_DATARATE ); } else { phyParam.Value = GetNextLowerTxDr( getPhy->Datarate, LA915_DWELL_LIMIT_DATARATE ); } break; } case PHY_MAX_TX_POWER: { phyParam.Value = LA915_MAX_TX_POWER; break; } case PHY_DEF_TX_POWER: { phyParam.Value = LA915_DEFAULT_TX_POWER; break; } case PHY_DEF_ADR_ACK_LIMIT: { phyParam.Value = LA915_ADR_ACK_LIMIT; break; } case PHY_DEF_ADR_ACK_DELAY: { phyParam.Value = LA915_ADR_ACK_DELAY; break; } case PHY_MAX_PAYLOAD: { if( getPhy->UplinkDwellTime == 0 ) { phyParam.Value = MaxPayloadOfDatarateDwell0LA915[getPhy->Datarate]; } else { phyParam.Value = MaxPayloadOfDatarateDwell1LA915[getPhy->Datarate]; } break; } case PHY_MAX_PAYLOAD_REPEATER: { if( getPhy->UplinkDwellTime == 0) { phyParam.Value = MaxPayloadOfDatarateRepeaterDwell0LA915[getPhy->Datarate]; } else { phyParam.Value = MaxPayloadOfDatarateRepeaterDwell1LA915[getPhy->Datarate]; } break; } case PHY_DUTY_CYCLE: { phyParam.Value = LA915_DUTY_CYCLE_ENABLED; break; } case PHY_MAX_RX_WINDOW: { phyParam.Value = LA915_MAX_RX_WINDOW; break; } case PHY_RECEIVE_DELAY1: { phyParam.Value = LA915_RECEIVE_DELAY1; break; } case PHY_RECEIVE_DELAY2: { phyParam.Value = LA915_RECEIVE_DELAY2; break; } case PHY_JOIN_ACCEPT_DELAY1: { phyParam.Value = LA915_JOIN_ACCEPT_DELAY1; break; } case PHY_JOIN_ACCEPT_DELAY2: { phyParam.Value = LA915_JOIN_ACCEPT_DELAY2; break; } case PHY_MAX_FCNT_GAP: { phyParam.Value = LA915_MAX_FCNT_GAP; break; } case PHY_ACK_TIMEOUT: { phyParam.Value = ( LA915_ACKTIMEOUT + randr( -LA915_ACK_TIMEOUT_RND, LA915_ACK_TIMEOUT_RND ) ); break; } case PHY_DEF_DR1_OFFSET: { phyParam.Value = LA915_DEFAULT_RX1_DR_OFFSET; break; } case PHY_DEF_RX2_FREQUENCY: { phyParam.Value = LA915_RX_WND_2_FREQ; break; } case PHY_DEF_RX2_DR: { phyParam.Value = LA915_RX_WND_2_DR; break; } case PHY_CHANNELS_MASK: { phyParam.ChannelsMask = NvmCtx.ChannelsMask; break; } case PHY_CHANNELS_DEFAULT_MASK: { phyParam.ChannelsMask = NvmCtx.ChannelsDefaultMask; break; } case PHY_MAX_NB_CHANNELS: { phyParam.Value = LA915_MAX_NB_CHANNELS; break; } case PHY_CHANNELS: { phyParam.Channels = NvmCtx.Channels; break; } case PHY_DEF_UPLINK_DWELL_TIME: { phyParam.Value = LA915_DEFAULT_UPLINK_DWELL_TIME; break; } case PHY_DEF_DOWNLINK_DWELL_TIME: { phyParam.Value = LA915_DEFAULT_DOWNLINK_DWELL_TIME; break; } case PHY_DEF_MAX_EIRP: { phyParam.fValue = LA915_DEFAULT_MAX_EIRP; break; } case PHY_DEF_ANTENNA_GAIN: { phyParam.fValue = LA915_DEFAULT_ANTENNA_GAIN; break; } case PHY_BEACON_FORMAT: { phyParam.BeaconFormat.BeaconSize = LA915_BEACON_SIZE; phyParam.BeaconFormat.Rfu1Size = LA915_RFU1_SIZE; phyParam.BeaconFormat.Rfu2Size = LA915_RFU2_SIZE; break; } case PHY_BEACON_CHANNEL_DR: { phyParam.Value = LA915_BEACON_CHANNEL_DR; break; } case PHY_BEACON_CHANNEL_STEPWIDTH: { phyParam.Value = LA915_BEACON_CHANNEL_STEPWIDTH; break; } case PHY_BEACON_NB_CHANNELS: { phyParam.Value = LA915_BEACON_NB_CHANNELS; break; } case PHY_PING_SLOT_CHANNEL_DR: { phyParam.Value = LA915_PING_SLOT_CHANNEL_DR; break; } default: { break; } } return phyParam; } void RegionLA915SetBandTxDone( SetBandTxDoneParams_t* txDone ) { RegionCommonSetBandTxDone( txDone->Joined, &NvmCtx.Bands[NvmCtx.Channels[txDone->Channel].Band], txDone->LastTxDoneTime ); } void RegionLA915InitDefaults( InitDefaultsParams_t* params ) { Band_t bands[LA915_MAX_NB_BANDS] = { LA915_BAND0 }; switch( params->Type ) { case INIT_TYPE_INIT: { // Initialize bands memcpy1( ( uint8_t* )NvmCtx.Bands, ( uint8_t* )bands, sizeof( Band_t ) * LA915_MAX_NB_BANDS ); // Channels // 125 kHz channels for( uint8_t i = 0; i < LA915_MAX_NB_CHANNELS - 8; i++ ) { NvmCtx.Channels[i].Frequency = 915200000 + i * 200000; NvmCtx.Channels[i].DrRange.Value = ( DR_5 << 4 ) | DR_0; NvmCtx.Channels[i].Band = 0; } // 500 kHz channels for( uint8_t i = LA915_MAX_NB_CHANNELS - 8; i < LA915_MAX_NB_CHANNELS; i++ ) { NvmCtx.Channels[i].Frequency = 915900000 + ( i - ( LA915_MAX_NB_CHANNELS - 8 ) ) * 1600000; NvmCtx.Channels[i].DrRange.Value = ( DR_6 << 4 ) | DR_6; NvmCtx.Channels[i].Band = 0; } // Initialize channels default mask NvmCtx.ChannelsDefaultMask[0] = 0xFF; NvmCtx.ChannelsDefaultMask[1] = 0; NvmCtx.ChannelsDefaultMask[2] = 0; NvmCtx.ChannelsDefaultMask[3] = 0; NvmCtx.ChannelsDefaultMask[4] = 0; NvmCtx.ChannelsDefaultMask[5] = 0; // Copy channels default mask RegionCommonChanMaskCopy( NvmCtx.ChannelsMask, NvmCtx.ChannelsDefaultMask, 6 ); // Copy into channels mask remaining RegionCommonChanMaskCopy( NvmCtx.ChannelsMaskRemaining, NvmCtx.ChannelsMask, 6 ); break; } case INIT_TYPE_RESTORE_CTX: { if( params->NvmCtx != 0 ) { memcpy1( (uint8_t*) &NvmCtx, (uint8_t*) params->NvmCtx, sizeof( NvmCtx ) ); } break; } case INIT_TYPE_RESTORE_DEFAULT_CHANNELS: { // Copy channels default mask RegionCommonChanMaskCopy( NvmCtx.ChannelsMask, NvmCtx.ChannelsDefaultMask, 6 ); for( uint8_t i = 0; i < 6; i++ ) { // Copy-And the channels mask NvmCtx.ChannelsMaskRemaining[i] &= NvmCtx.ChannelsMask[i]; } break; } default: { break; } } } void* RegionLA915GetNvmCtx( GetNvmCtxParams_t* params ) { params->nvmCtxSize = sizeof( RegionLA915NvmCtx_t ); return &NvmCtx; } bool RegionLA915Verify( VerifyParams_t* verify, PhyAttribute_t phyAttribute ) { switch( phyAttribute ) { case PHY_TX_DR: case PHY_DEF_TX_DR: { if( verify->DatarateParams.UplinkDwellTime == 0 ) { return RegionCommonValueInRange( verify->DatarateParams.Datarate, LA915_TX_MIN_DATARATE, LA915_TX_MAX_DATARATE ); } else { return RegionCommonValueInRange( verify->DatarateParams.Datarate, LA915_DWELL_LIMIT_DATARATE, LA915_TX_MAX_DATARATE ); } } case PHY_RX_DR: { if( verify->DatarateParams.UplinkDwellTime == 0 ) { return RegionCommonValueInRange( verify->DatarateParams.Datarate, LA915_RX_MIN_DATARATE, LA915_RX_MAX_DATARATE ); } else { return RegionCommonValueInRange( verify->DatarateParams.Datarate, LA915_DWELL_LIMIT_DATARATE, LA915_RX_MAX_DATARATE ); } } case PHY_DEF_TX_POWER: case PHY_TX_POWER: { // Remark: switched min and max! return RegionCommonValueInRange( verify->TxPower, LA915_MAX_TX_POWER, LA915_MIN_TX_POWER ); } case PHY_DUTY_CYCLE: { return LA915_DUTY_CYCLE_ENABLED; } default: return false; } } void RegionLA915ApplyCFList( ApplyCFListParams_t* applyCFList ) { // Size of the optional CF list must be 16 byte if( applyCFList->Size != 16 ) { return; } // Last byte CFListType must be 0x01 to indicate the CFList contains a series of ChMask fields if( applyCFList->Payload[15] != 0x01 ) { return; } // ChMask0 - ChMask4 must be set (every ChMask has 16 bit) for( uint8_t chMaskItr = 0, cntPayload = 0; chMaskItr <= 4; chMaskItr++, cntPayload+=2 ) { NvmCtx.ChannelsMask[chMaskItr] = (uint16_t) (0x00FF & applyCFList->Payload[cntPayload]); NvmCtx.ChannelsMask[chMaskItr] |= (uint16_t) (applyCFList->Payload[cntPayload+1] << 8); if( chMaskItr == 4 ) { NvmCtx.ChannelsMask[chMaskItr] = NvmCtx.ChannelsMask[chMaskItr] & CHANNELS_MASK_500KHZ_MASK; } // Set the channel mask to the remaining NvmCtx.ChannelsMaskRemaining[chMaskItr] &= NvmCtx.ChannelsMask[chMaskItr]; } } bool RegionLA915ChanMaskSet( ChanMaskSetParams_t* chanMaskSet ) { switch( chanMaskSet->ChannelsMaskType ) { case CHANNELS_MASK: { RegionCommonChanMaskCopy( NvmCtx.ChannelsMask, chanMaskSet->ChannelsMaskIn, 6 ); NvmCtx.ChannelsDefaultMask[4] = NvmCtx.ChannelsDefaultMask[4] & CHANNELS_MASK_500KHZ_MASK; NvmCtx.ChannelsDefaultMask[5] = 0x0000; for( uint8_t i = 0; i < 6; i++ ) { // Copy-And the channels mask NvmCtx.ChannelsMaskRemaining[i] &= NvmCtx.ChannelsMask[i]; } break; } case CHANNELS_DEFAULT_MASK: { RegionCommonChanMaskCopy( NvmCtx.ChannelsDefaultMask, chanMaskSet->ChannelsMaskIn, 6 ); break; } default: return false; } return true; } void RegionLA915ComputeRxWindowParameters( int8_t datarate, uint8_t minRxSymbols, uint32_t rxError, RxConfigParams_t *rxConfigParams ) { double tSymbol = 0.0; // Get the datarate, perform a boundary check rxConfigParams->Datarate = MIN( datarate, LA915_RX_MAX_DATARATE ); rxConfigParams->Bandwidth = GetBandwidth( rxConfigParams->Datarate ); tSymbol = RegionCommonComputeSymbolTimeLoRa( DataratesLA915[rxConfigParams->Datarate], BandwidthsLA915[rxConfigParams->Datarate] ); RegionCommonComputeRxWindowParameters( tSymbol, minRxSymbols, rxError, Radio.GetWakeupTime( ), &rxConfigParams->WindowTimeout, &rxConfigParams->WindowOffset ); } bool RegionLA915RxConfig( RxConfigParams_t* rxConfig, int8_t* datarate ) { int8_t dr = rxConfig->Datarate; uint8_t maxPayload = 0; int8_t phyDr = 0; uint32_t frequency = rxConfig->Frequency; if( Radio.GetStatus( ) != RF_IDLE ) { return false; } if( rxConfig->RxSlot == RX_SLOT_WIN_1 ) { // Apply window 1 frequency frequency = LA915_FIRST_RX1_CHANNEL + ( rxConfig->Channel % 8 ) * LA915_STEPWIDTH_RX1_CHANNEL; } // Read the physical datarate from the datarates table phyDr = DataratesLA915[dr]; Radio.SetChannel( frequency ); // Radio configuration Radio.SetRxConfig( MODEM_LORA, rxConfig->Bandwidth, phyDr, 1, 0, 8, rxConfig->WindowTimeout, false, 0, false, 0, 0, true, rxConfig->RxContinuous ); if( rxConfig->RepeaterSupport == true ) { maxPayload = MaxPayloadOfDatarateRepeaterDwell0LA915[dr]; } else { maxPayload = MaxPayloadOfDatarateDwell0LA915[dr]; } Radio.SetMaxPayloadLength( MODEM_LORA, maxPayload + LORA_MAC_FRMPAYLOAD_OVERHEAD ); *datarate = (uint8_t) dr; return true; } bool RegionLA915TxConfig( TxConfigParams_t* txConfig, int8_t* txPower, TimerTime_t* txTimeOnAir ) { int8_t phyDr = DataratesLA915[txConfig->Datarate]; int8_t txPowerLimited = LimitTxPower( txConfig->TxPower, NvmCtx.Bands[NvmCtx.Channels[txConfig->Channel].Band].TxMaxPower, txConfig->Datarate, NvmCtx.ChannelsMask ); uint32_t bandwidth = GetBandwidth( txConfig->Datarate ); int8_t phyTxPower = 0; // Calculate physical TX power phyTxPower = RegionCommonComputeTxPower( txPowerLimited, txConfig->MaxEirp, txConfig->AntennaGain ); // Setup the radio frequency Radio.SetChannel( NvmCtx.Channels[txConfig->Channel].Frequency ); Radio.SetTxConfig( MODEM_LORA, phyTxPower, 0, bandwidth, phyDr, 1, 8, false, true, 0, 0, false, 4000 ); // Setup maximum payload lenght of the radio driver Radio.SetMaxPayloadLength( MODEM_LORA, txConfig->PktLen ); *txTimeOnAir = Radio.TimeOnAir( MODEM_LORA, txConfig->PktLen ); *txPower = txPowerLimited; return true; } uint8_t RegionLA915LinkAdrReq( LinkAdrReqParams_t* linkAdrReq, int8_t* drOut, int8_t* txPowOut, uint8_t* nbRepOut, uint8_t* nbBytesParsed ) { uint8_t status = 0x07; RegionCommonLinkAdrParams_t linkAdrParams; uint8_t nextIndex = 0; uint8_t bytesProcessed = 0; uint16_t channelsMask[6] = { 0, 0, 0, 0, 0, 0 }; GetPhyParams_t getPhy; PhyParam_t phyParam; RegionCommonLinkAdrReqVerifyParams_t linkAdrVerifyParams; // Initialize local copy of channels mask RegionCommonChanMaskCopy( channelsMask, NvmCtx.ChannelsMask, 6 ); while( bytesProcessed < linkAdrReq->PayloadSize ) { nextIndex = RegionCommonParseLinkAdrReq( &( linkAdrReq->Payload[bytesProcessed] ), &linkAdrParams ); if( nextIndex == 0 ) break; // break loop, since no more request has been found // Update bytes processed bytesProcessed += nextIndex; // Revert status, as we only check the last ADR request for the channel mask KO status = 0x07; if( linkAdrParams.ChMaskCtrl == 6 ) { // Enable all 125 kHz channels channelsMask[0] = 0xFFFF; channelsMask[1] = 0xFFFF; channelsMask[2] = 0xFFFF; channelsMask[3] = 0xFFFF; // Apply chMask to channels 64 to 71 channelsMask[4] = linkAdrParams.ChMask & CHANNELS_MASK_500KHZ_MASK; } else if( linkAdrParams.ChMaskCtrl == 7 ) { // Disable all 125 kHz channels channelsMask[0] = 0x0000; channelsMask[1] = 0x0000; channelsMask[2] = 0x0000; channelsMask[3] = 0x0000; // Apply chMask to channels 64 to 71 channelsMask[4] = linkAdrParams.ChMask & CHANNELS_MASK_500KHZ_MASK; } else if( linkAdrParams.ChMaskCtrl == 5 ) { // Start value for comparision uint8_t bitMask = 1; // cntChannelMask for channelsMask[0] until channelsMask[3] uint8_t cntChannelMask = 0; // i will be 1, 2, 3, ..., 7 for( uint8_t i = 0; i <= 7; i++ ) { // 8 MSBs of ChMask are RFU // Checking if the ChMask is set, then true if( ( ( linkAdrParams.ChMask & 0x00FF ) & ( bitMask << i ) ) != 0 ) { if( ( i % 2 ) == 0 ) { // Enable a bank of 8 125kHz channels, 8 LSBs channelsMask[cntChannelMask] |= 0x00FF; // Enable the corresponding 500kHz channel channelsMask[4] |= ( bitMask << i ); } else { // Enable a bank of 8 125kHz channels, 8 MSBs channelsMask[cntChannelMask] |= 0xFF00; // Enable the corresponding 500kHz channel channelsMask[4] |= ( bitMask << i ); // cntChannelMask increment for uneven i cntChannelMask++; } } // ChMask is not set else { if( ( i % 2 ) == 0 ) { // Disable a bank of 8 125kHz channels, 8 LSBs channelsMask[cntChannelMask] &= 0xFF00; // Disable the corresponding 500kHz channel channelsMask[4] &= ~( bitMask << i ); } else { // Enable a bank of 8 125kHz channels, 8 MSBs channelsMask[cntChannelMask] &= 0x00FF; // Disable the corresponding 500kHz channel channelsMask[4] &= ~( bitMask << i ); // cntChannelMask increment for uneven i cntChannelMask++; } } } } else { channelsMask[linkAdrParams.ChMaskCtrl] = linkAdrParams.ChMask; } } // FCC 15.247 paragraph F mandates to hop on at least 2 125 kHz channels if( ( linkAdrParams.Datarate < DR_6 ) && ( RegionCommonCountChannels( channelsMask, 0, 4 ) < 2 ) ) { status &= 0xFE; // Channel mask KO } // Get the minimum possible datarate getPhy.Attribute = PHY_MIN_TX_DR; getPhy.UplinkDwellTime = linkAdrReq->UplinkDwellTime; phyParam = RegionLA915GetPhyParam( &getPhy ); linkAdrVerifyParams.Status = status; linkAdrVerifyParams.AdrEnabled = linkAdrReq->AdrEnabled; linkAdrVerifyParams.Datarate = linkAdrParams.Datarate; linkAdrVerifyParams.TxPower = linkAdrParams.TxPower; linkAdrVerifyParams.NbRep = linkAdrParams.NbRep; linkAdrVerifyParams.CurrentDatarate = linkAdrReq->CurrentDatarate; linkAdrVerifyParams.CurrentTxPower = linkAdrReq->CurrentTxPower; linkAdrVerifyParams.CurrentNbRep = linkAdrReq->CurrentNbRep; linkAdrVerifyParams.NbChannels = LA915_MAX_NB_CHANNELS; linkAdrVerifyParams.ChannelsMask = channelsMask; linkAdrVerifyParams.MinDatarate = ( int8_t )phyParam.Value; linkAdrVerifyParams.MaxDatarate = LA915_TX_MAX_DATARATE; linkAdrVerifyParams.Channels = NvmCtx.Channels; linkAdrVerifyParams.MinTxPower = LA915_MIN_TX_POWER; linkAdrVerifyParams.MaxTxPower = LA915_MAX_TX_POWER; linkAdrVerifyParams.Version = linkAdrReq->Version; // Verify the parameters and update, if necessary status = RegionCommonLinkAdrReqVerifyParams( &linkAdrVerifyParams, &linkAdrParams.Datarate, &linkAdrParams.TxPower, &linkAdrParams.NbRep ); // Update channelsMask if everything is correct if( status == 0x07 ) { // Copy Mask RegionCommonChanMaskCopy( NvmCtx.ChannelsMask, channelsMask, 6 ); NvmCtx.ChannelsMaskRemaining[0] &= NvmCtx.ChannelsMask[0]; NvmCtx.ChannelsMaskRemaining[1] &= NvmCtx.ChannelsMask[1]; NvmCtx.ChannelsMaskRemaining[2] &= NvmCtx.ChannelsMask[2]; NvmCtx.ChannelsMaskRemaining[3] &= NvmCtx.ChannelsMask[3]; NvmCtx.ChannelsMaskRemaining[4] = NvmCtx.ChannelsMask[4]; NvmCtx.ChannelsMaskRemaining[5] = NvmCtx.ChannelsMask[5]; } // Update status variables *drOut = linkAdrParams.Datarate; *txPowOut = linkAdrParams.TxPower; *nbRepOut = linkAdrParams.NbRep; *nbBytesParsed = bytesProcessed; return status; } uint8_t RegionLA915RxParamSetupReq( RxParamSetupReqParams_t* rxParamSetupReq ) { uint8_t status = 0x07; // Verify radio frequency if( VerifyRfFreq( rxParamSetupReq->Frequency ) == false ) { status &= 0xFE; // Channel frequency KO } // Verify datarate if( RegionCommonValueInRange( rxParamSetupReq->Datarate, LA915_RX_MIN_DATARATE, LA915_RX_MAX_DATARATE ) == false ) { status &= 0xFD; // Datarate KO } if( ( rxParamSetupReq->Datarate == DR_7 ) || ( rxParamSetupReq->Datarate > DR_13 ) ) { status &= 0xFD; // Datarate KO } // Verify datarate offset if( RegionCommonValueInRange( rxParamSetupReq->DrOffset, LA915_MIN_RX1_DR_OFFSET, LA915_MAX_RX1_DR_OFFSET ) == false ) { status &= 0xFB; // Rx1DrOffset range KO } return status; } uint8_t RegionLA915NewChannelReq( NewChannelReqParams_t* newChannelReq ) { // Datarate and frequency KO return 0; } int8_t RegionLA915TxParamSetupReq( TxParamSetupReqParams_t* txParamSetupReq ) { // Accept the request return 0; } uint8_t RegionLA915DlChannelReq( DlChannelReqParams_t* dlChannelReq ) { return 0; } int8_t RegionLA915AlternateDr( int8_t currentDr, AlternateDrType_t type ) { static int8_t trialsCount = 0; // Re-enable 500 kHz default channels NvmCtx.ChannelsMask[4] = CHANNELS_MASK_500KHZ_MASK; if( ( trialsCount & 0x01 ) == 0x01 ) { currentDr = DR_6; } else { currentDr = DR_2; } trialsCount++; return currentDr; } void RegionLA915CalcBackOff( CalcBackOffParams_t* calcBackOff ) { RegionCommonCalcBackOffParams_t calcBackOffParams; calcBackOffParams.Channels = NvmCtx.Channels; calcBackOffParams.Bands = NvmCtx.Bands; calcBackOffParams.LastTxIsJoinRequest = calcBackOff->LastTxIsJoinRequest; calcBackOffParams.Joined = calcBackOff->Joined; calcBackOffParams.DutyCycleEnabled = calcBackOff->DutyCycleEnabled; calcBackOffParams.Channel = calcBackOff->Channel; calcBackOffParams.ElapsedTime = calcBackOff->ElapsedTime; calcBackOffParams.TxTimeOnAir = calcBackOff->TxTimeOnAir; RegionCommonCalcBackOff( &calcBackOffParams ); } LoRaMacStatus_t RegionLA915NextChannel( NextChanParams_t* nextChanParams, uint8_t* channel, TimerTime_t* time, TimerTime_t* aggregatedTimeOff ) { uint8_t nbEnabledChannels = 0; uint8_t delayTx = 0; uint8_t enabledChannels[LA915_MAX_NB_CHANNELS] = { 0 }; TimerTime_t nextTxDelay = 0; // Count 125kHz channels if( RegionCommonCountChannels( NvmCtx.ChannelsMaskRemaining, 0, 4 ) == 0 ) { // Reactivate default channels RegionCommonChanMaskCopy( NvmCtx.ChannelsMaskRemaining, NvmCtx.ChannelsMask, 4 ); } // Check other channels if( nextChanParams->Datarate >= DR_6 ) { if( ( NvmCtx.ChannelsMaskRemaining[4] & CHANNELS_MASK_500KHZ_MASK ) == 0 ) { NvmCtx.ChannelsMaskRemaining[4] = NvmCtx.ChannelsMask[4]; } } TimerTime_t elapsed = TimerGetElapsedTime( nextChanParams->LastAggrTx ); if( ( nextChanParams->LastAggrTx == 0 ) || ( nextChanParams->AggrTimeOff <= elapsed ) ) { // Reset Aggregated time off *aggregatedTimeOff = 0; // Update bands Time OFF nextTxDelay = RegionCommonUpdateBandTimeOff( nextChanParams->Joined, nextChanParams->DutyCycleEnabled, NvmCtx.Bands, LA915_MAX_NB_BANDS ); // Search how many channels are enabled nbEnabledChannels = CountNbOfEnabledChannels( nextChanParams->Datarate, NvmCtx.ChannelsMaskRemaining, NvmCtx.Channels, NvmCtx.Bands, enabledChannels, &delayTx ); } else { delayTx++; nextTxDelay = nextChanParams->AggrTimeOff - elapsed; } if( nbEnabledChannels > 0 ) { // We found a valid channel *channel = enabledChannels[randr( 0, nbEnabledChannels - 1 )]; // Disable the channel in the mask RegionCommonChanDisable( NvmCtx.ChannelsMaskRemaining, *channel, LA915_MAX_NB_CHANNELS - 8 ); *time = 0; return LORAMAC_STATUS_OK; } else { if( delayTx > 0 ) { // Delay transmission due to AggregatedTimeOff or to a band time off *time = nextTxDelay; return LORAMAC_STATUS_DUTYCYCLE_RESTRICTED; } // Datarate not supported by any channel *time = 0; return LORAMAC_STATUS_NO_CHANNEL_FOUND; } } LoRaMacStatus_t RegionLA915ChannelAdd( ChannelAddParams_t* channelAdd ) { return LORAMAC_STATUS_PARAMETER_INVALID; } bool RegionLA915ChannelsRemove( ChannelRemoveParams_t* channelRemove ) { return LORAMAC_STATUS_PARAMETER_INVALID; } void RegionLA915SetContinuousWave( ContinuousWaveParams_t* continuousWave ) { int8_t txPowerLimited = LimitTxPower( continuousWave->TxPower, NvmCtx.Bands[NvmCtx.Channels[continuousWave->Channel].Band].TxMaxPower, continuousWave->Datarate, NvmCtx.ChannelsMask ); int8_t phyTxPower = 0; uint32_t frequency = NvmCtx.Channels[continuousWave->Channel].Frequency; // Calculate physical TX power phyTxPower = RegionCommonComputeTxPower( txPowerLimited, continuousWave->MaxEirp, continuousWave->AntennaGain ); Radio.SetTxContinuousWave( frequency, phyTxPower, continuousWave->Timeout ); } uint8_t RegionLA915ApplyDrOffset( uint8_t downlinkDwellTime, int8_t dr, int8_t drOffset ) { int8_t datarate = DatarateOffsetsLA915[dr][drOffset]; if( datarate < 0 ) { if( downlinkDwellTime == 0 ) { datarate = LA915_TX_MIN_DATARATE; } else { datarate = LA915_DWELL_LIMIT_DATARATE; } } return datarate; } void RegionLA915RxBeaconSetup( RxBeaconSetup_t* rxBeaconSetup, uint8_t* outDr ) { RegionCommonRxBeaconSetupParams_t regionCommonRxBeaconSetup; regionCommonRxBeaconSetup.Datarates = DataratesLA915; regionCommonRxBeaconSetup.Frequency = rxBeaconSetup->Frequency; regionCommonRxBeaconSetup.BeaconSize = LA915_BEACON_SIZE; regionCommonRxBeaconSetup.BeaconDatarate = LA915_BEACON_CHANNEL_DR; regionCommonRxBeaconSetup.BeaconChannelBW = LA915_BEACON_CHANNEL_BW; regionCommonRxBeaconSetup.RxTime = rxBeaconSetup->RxTime; regionCommonRxBeaconSetup.SymbolTimeout = rxBeaconSetup->SymbolTimeout; RegionCommonRxBeaconSetup( ®ionCommonRxBeaconSetup ); // Store downlink datarate *outDr = LA915_BEACON_CHANNEL_DR; }