/*! * \file RegionAS923_2.c * * \brief Region implementation for AS923 * * \copyright Revised BSD License, see section \ref LICENSE. * * \code * ______ _ * / _____) _ | | * ( (____ _____ ____ _| |_ _____ ____| |__ * \____ \| ___ | (_ _) ___ |/ ___) _ \ * _____) ) ____| | | || |_| ____( (___| | | | * (______/|_____)_|_|_| \__)_____)\____)_| |_| * (C)2013-2017 Semtech * * ___ _____ _ ___ _ _____ ___ ___ ___ ___ * / __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __| * \__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _| * |___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___| * embedded.connectivity.solutions=============== * * \endcode * * \author Miguel Luis ( Semtech ) * * \author Gregory Cristian ( Semtech ) * * \author Daniel Jaeckle ( STACKFORCE ) */ #include "utilities.h" #include "RegionCommon.h" #include "RegionAS923-2.h" // Definitions #define CHANNELS_MASK_SIZE 1 /*! * Region specific context */ typedef struct sRegionAS923_2NvmCtx { /*! * LoRaMAC channels */ ChannelParams_t Channels[ AS923_2_MAX_NB_CHANNELS ]; /*! * LoRaMac bands */ Band_t Bands[ AS923_2_MAX_NB_BANDS ]; /*! * LoRaMac channels mask */ uint16_t ChannelsMask[ CHANNELS_MASK_SIZE ]; /*! * LoRaMac channels default mask */ uint16_t ChannelsDefaultMask[ CHANNELS_MASK_SIZE ]; }RegionAS923_2NvmCtx_t; /* * Non-volatile module context. */ static RegionAS923_2NvmCtx_t NvmCtx; // Static functions static int8_t GetNextLowerTxDr( int8_t dr, int8_t minDr ) { uint8_t nextLowerDr = 0; if( dr == minDr ) { nextLowerDr = minDr; } else { nextLowerDr = dr - 1; } return nextLowerDr; } static uint32_t GetBandwidth( uint32_t drIndex ) { switch( BandwidthsAS923_2[drIndex] ) { default: case 125000: return 0; case 250000: return 1; case 500000: return 2; } } static int8_t LimitTxPower( int8_t txPower, int8_t maxBandTxPower, int8_t datarate, uint16_t* channelsMask ) { int8_t txPowerResult = txPower; // Limit tx power to the band max txPowerResult = MAX( txPower, maxBandTxPower ); return txPowerResult; } static bool VerifyRfFreq( uint32_t freq ) { // Check radio driver support if( Radio.CheckRfFrequency( freq ) == false ) { return false; } if( ( freq < 915000000 ) || ( freq > 928000000 ) ) { return false; } return true; } static uint8_t CountNbOfEnabledChannels( bool joined, uint8_t datarate, uint16_t* channelsMask, ChannelParams_t* channels, Band_t* bands, uint8_t* enabledChannels, uint8_t* delayTx ) { uint8_t nbEnabledChannels = 0; uint8_t delayTransmission = 0; for( uint8_t i = 0, k = 0; i < AS923_2_MAX_NB_CHANNELS; i += 16, k++ ) { for( uint8_t j = 0; j < 16; j++ ) { if( ( channelsMask[k] & ( 1 << j ) ) != 0 ) { if( channels[i + j].Frequency == 0 ) { // Check if the channel is enabled continue; } if( joined == false ) { if( ( AS923_2_JOIN_CHANNELS & ( 1 << j ) ) == 0 ) { continue; } } if( RegionCommonValueInRange( datarate, channels[i + j].DrRange.Fields.Min, channels[i + j].DrRange.Fields.Max ) == false ) { // Check if the current channel selection supports the given datarate continue; } if( bands[channels[i + j].Band].TimeOff > 0 ) { // Check if the band is available for transmission delayTransmission++; continue; } enabledChannels[nbEnabledChannels++] = i + j; } } } *delayTx = delayTransmission; return nbEnabledChannels; } PhyParam_t RegionAS923_2GetPhyParam( GetPhyParams_t* getPhy ) { PhyParam_t phyParam = { 0 }; switch( getPhy->Attribute ) { case PHY_MIN_RX_DR: { if( getPhy->DownlinkDwellTime == 0 ) { phyParam.Value = AS923_2_RX_MIN_DATARATE; } else { phyParam.Value = AS923_2_DWELL_LIMIT_DATARATE; } break; } case PHY_MIN_TX_DR: { if( getPhy->UplinkDwellTime == 0 ) { phyParam.Value = AS923_2_TX_MIN_DATARATE; } else { phyParam.Value = AS923_2_DWELL_LIMIT_DATARATE; } break; } case PHY_DEF_TX_DR: { phyParam.Value = AS923_2_DEFAULT_DATARATE; break; } case PHY_NEXT_LOWER_TX_DR: { if( getPhy->UplinkDwellTime == 0 ) { phyParam.Value = GetNextLowerTxDr( getPhy->Datarate, AS923_2_TX_MIN_DATARATE ); } else { phyParam.Value = GetNextLowerTxDr( getPhy->Datarate, AS923_2_DWELL_LIMIT_DATARATE ); } break; } case PHY_MAX_TX_POWER: { phyParam.Value = AS923_2_MAX_TX_POWER; break; } case PHY_DEF_TX_POWER: { phyParam.Value = AS923_2_DEFAULT_TX_POWER; break; } case PHY_DEF_ADR_ACK_LIMIT: { phyParam.Value = AS923_2_ADR_ACK_LIMIT; break; } case PHY_DEF_ADR_ACK_DELAY: { phyParam.Value = AS923_2_ADR_ACK_DELAY; break; } case PHY_MAX_PAYLOAD: { if( getPhy->UplinkDwellTime == 0 ) { phyParam.Value = MaxPayloadOfDatarateDwell0AS923_2[getPhy->Datarate]; } else { phyParam.Value = MaxPayloadOfDatarateDwell1UpAS923_2[getPhy->Datarate]; } break; } case PHY_MAX_PAYLOAD_REPEATER: { if( getPhy->UplinkDwellTime == 0 ) { phyParam.Value = MaxPayloadOfDatarateRepeaterDwell0AS923_2[getPhy->Datarate]; } else { phyParam.Value = MaxPayloadOfDatarateDwell1UpAS923_2[getPhy->Datarate]; } break; } case PHY_DUTY_CYCLE: { phyParam.Value = AS923_2_DUTY_CYCLE_ENABLED; break; } case PHY_MAX_RX_WINDOW: { phyParam.Value = AS923_2_MAX_RX_WINDOW; break; } case PHY_RECEIVE_DELAY1: { phyParam.Value = AS923_2_RECEIVE_DELAY1; break; } case PHY_RECEIVE_DELAY2: { phyParam.Value = AS923_2_RECEIVE_DELAY2; break; } case PHY_JOIN_ACCEPT_DELAY1: { phyParam.Value = AS923_2_JOIN_ACCEPT_DELAY1; break; } case PHY_JOIN_ACCEPT_DELAY2: { phyParam.Value = AS923_2_JOIN_ACCEPT_DELAY2; break; } case PHY_MAX_FCNT_GAP: { phyParam.Value = AS923_2_MAX_FCNT_GAP; break; } case PHY_ACK_TIMEOUT: { phyParam.Value = ( AS923_2_ACKTIMEOUT + randr( -AS923_2_ACK_TIMEOUT_RND, AS923_2_ACK_TIMEOUT_RND ) ); break; } case PHY_DEF_DR1_OFFSET: { phyParam.Value = AS923_2_DEFAULT_RX1_DR_OFFSET; break; } case PHY_DEF_RX2_FREQUENCY: { phyParam.Value = AS923_2_RX_WND_2_FREQ; break; } case PHY_DEF_RX2_DR: { phyParam.Value = AS923_2_RX_WND_2_DR; break; } case PHY_CHANNELS_MASK: { phyParam.ChannelsMask = NvmCtx.ChannelsMask; break; } case PHY_CHANNELS_DEFAULT_MASK: { phyParam.ChannelsMask = NvmCtx.ChannelsDefaultMask; break; } case PHY_MAX_NB_CHANNELS: { phyParam.Value = AS923_2_MAX_NB_CHANNELS; break; } case PHY_CHANNELS: { phyParam.Channels = NvmCtx.Channels; break; } case PHY_DEF_UPLINK_DWELL_TIME: { phyParam.Value = AS923_2_DEFAULT_UPLINK_DWELL_TIME; break; } case PHY_DEF_DOWNLINK_DWELL_TIME: { phyParam.Value = AS923_2_DEFAULT_DOWNLINK_DWELL_TIME; break; } case PHY_DEF_MAX_EIRP: { phyParam.fValue = AS923_2_DEFAULT_MAX_EIRP; break; } case PHY_DEF_ANTENNA_GAIN: { phyParam.fValue = AS923_2_DEFAULT_ANTENNA_GAIN; break; } case PHY_BEACON_CHANNEL_FREQ: { phyParam.Value = AS923_2_BEACON_CHANNEL_FREQ; break; } case PHY_BEACON_FORMAT: { phyParam.BeaconFormat.BeaconSize = AS923_2_BEACON_SIZE; phyParam.BeaconFormat.Rfu1Size = AS923_2_RFU1_SIZE; phyParam.BeaconFormat.Rfu2Size = AS923_2_RFU2_SIZE; break; } case PHY_BEACON_CHANNEL_DR: { phyParam.Value = AS923_2_BEACON_CHANNEL_DR; break; } case PHY_PING_SLOT_CHANNEL_DR: { phyParam.Value = AS923_2_PING_SLOT_CHANNEL_DR; break; } default: { break; } } return phyParam; } void RegionAS923_2SetBandTxDone( SetBandTxDoneParams_t* txDone ) { RegionCommonSetBandTxDone( txDone->Joined, &NvmCtx.Bands[NvmCtx.Channels[txDone->Channel].Band], txDone->LastTxDoneTime ); } void RegionAS923_2InitDefaults( InitDefaultsParams_t* params ) { Band_t bands[AS923_2_MAX_NB_BANDS] = { AS923_2_BAND0 }; switch( params->Type ) { case INIT_TYPE_INIT: { // Initialize bands memcpy1( ( uint8_t* )NvmCtx.Bands, ( uint8_t* )bands, sizeof( Band_t ) * AS923_2_MAX_NB_BANDS ); // Channels NvmCtx.Channels[0] = ( ChannelParams_t ) AS923_2_LC1; NvmCtx.Channels[1] = ( ChannelParams_t ) AS923_2_LC2; // Initialize the channels default mask NvmCtx.ChannelsDefaultMask[0] = LC( 1 ) + LC( 2 ); // Update the channels mask RegionCommonChanMaskCopy( NvmCtx.ChannelsMask, NvmCtx.ChannelsDefaultMask, 1 ); break; } case INIT_TYPE_RESTORE_CTX: { if( params->NvmCtx != 0 ) { memcpy1( (uint8_t*) &NvmCtx, (uint8_t*) params->NvmCtx, sizeof( NvmCtx ) ); } break; } case INIT_TYPE_RESTORE_DEFAULT_CHANNELS: { // Restore channels default mask NvmCtx.ChannelsMask[0] |= NvmCtx.ChannelsDefaultMask[0]; // Channels NvmCtx.Channels[0] = ( ChannelParams_t ) AS923_2_LC1; NvmCtx.Channels[1] = ( ChannelParams_t ) AS923_2_LC2; break; } default: { break; } } } void* RegionAS923_2GetNvmCtx( GetNvmCtxParams_t* params ) { params->nvmCtxSize = sizeof( RegionAS923_2NvmCtx_t ); return &NvmCtx; } bool RegionAS923_2Verify( VerifyParams_t* verify, PhyAttribute_t phyAttribute ) { switch( phyAttribute ) { case PHY_FREQUENCY: { return VerifyRfFreq( verify->Frequency ); } case PHY_TX_DR: { if( verify->DatarateParams.UplinkDwellTime == 0 ) { return RegionCommonValueInRange( verify->DatarateParams.Datarate, AS923_2_TX_MIN_DATARATE, AS923_2_TX_MAX_DATARATE ); } else { return RegionCommonValueInRange( verify->DatarateParams.Datarate, AS923_2_DWELL_LIMIT_DATARATE, AS923_2_TX_MAX_DATARATE ); } } case PHY_DEF_TX_DR: { return RegionCommonValueInRange( verify->DatarateParams.Datarate, DR_0, DR_5 ); } case PHY_RX_DR: { if( verify->DatarateParams.DownlinkDwellTime == 0 ) { return RegionCommonValueInRange( verify->DatarateParams.Datarate, AS923_2_RX_MIN_DATARATE, AS923_2_RX_MAX_DATARATE ); } else { return RegionCommonValueInRange( verify->DatarateParams.Datarate, AS923_2_DWELL_LIMIT_DATARATE, AS923_2_RX_MAX_DATARATE ); } } case PHY_DEF_TX_POWER: case PHY_TX_POWER: { // Remark: switched min and max! return RegionCommonValueInRange( verify->TxPower, AS923_2_MAX_TX_POWER, AS923_2_MIN_TX_POWER ); } case PHY_DUTY_CYCLE: { return AS923_2_DUTY_CYCLE_ENABLED; } default: return false; } } void RegionAS923_2ApplyCFList( ApplyCFListParams_t* applyCFList ) { ChannelParams_t newChannel; ChannelAddParams_t channelAdd; ChannelRemoveParams_t channelRemove; // Setup default datarate range newChannel.DrRange.Value = ( DR_5 << 4 ) | DR_0; // Size of the optional CF list if( applyCFList->Size != 16 ) { return; } // Last byte CFListType must be 0 to indicate the CFList contains a list of frequencies if( applyCFList->Payload[15] != 0 ) { return; } // Last byte is RFU, don't take it into account for( uint8_t i = 0, chanIdx = AS923_2_NUMB_DEFAULT_CHANNELS; chanIdx < AS923_2_MAX_NB_CHANNELS; i+=3, chanIdx++ ) { if( chanIdx < ( AS923_2_NUMB_CHANNELS_CF_LIST + AS923_2_NUMB_DEFAULT_CHANNELS ) ) { // Channel frequency newChannel.Frequency = (uint32_t) applyCFList->Payload[i]; newChannel.Frequency |= ( (uint32_t) applyCFList->Payload[i + 1] << 8 ); newChannel.Frequency |= ( (uint32_t) applyCFList->Payload[i + 2] << 16 ); newChannel.Frequency *= 100; // Initialize alternative frequency to 0 newChannel.Rx1Frequency = 0; } else { newChannel.Frequency = 0; newChannel.DrRange.Value = 0; newChannel.Rx1Frequency = 0; } if( newChannel.Frequency != 0 ) { channelAdd.NewChannel = &newChannel; channelAdd.ChannelId = chanIdx; // Try to add all channels RegionAS923_2ChannelAdd( &channelAdd ); } else { channelRemove.ChannelId = chanIdx; RegionAS923_2ChannelsRemove( &channelRemove ); } } } bool RegionAS923_2ChanMaskSet( ChanMaskSetParams_t* chanMaskSet ) { switch( chanMaskSet->ChannelsMaskType ) { case CHANNELS_MASK: { RegionCommonChanMaskCopy( NvmCtx.ChannelsMask, chanMaskSet->ChannelsMaskIn, 1 ); break; } case CHANNELS_DEFAULT_MASK: { RegionCommonChanMaskCopy( NvmCtx.ChannelsDefaultMask, chanMaskSet->ChannelsMaskIn, 1 ); break; } default: return false; } return true; } void RegionAS923_2ComputeRxWindowParameters( int8_t datarate, uint8_t minRxSymbols, uint32_t rxError, RxConfigParams_t *rxConfigParams ) { double tSymbol = 0.0; // Get the datarate, perform a boundary check rxConfigParams->Datarate = MIN( datarate, AS923_2_RX_MAX_DATARATE ); rxConfigParams->Bandwidth = GetBandwidth( rxConfigParams->Datarate ); if( rxConfigParams->Datarate == DR_7 ) { // FSK tSymbol = RegionCommonComputeSymbolTimeFsk( DataratesAS923_2[rxConfigParams->Datarate] ); } else { // LoRa tSymbol = RegionCommonComputeSymbolTimeLoRa( DataratesAS923_2[rxConfigParams->Datarate], BandwidthsAS923_2[rxConfigParams->Datarate] ); } RegionCommonComputeRxWindowParameters( tSymbol, minRxSymbols, rxError, Radio.GetWakeupTime( ), &rxConfigParams->WindowTimeout, &rxConfigParams->WindowOffset ); } bool RegionAS923_2RxConfig( RxConfigParams_t* rxConfig, int8_t* datarate ) { RadioModems_t modem; int8_t dr = rxConfig->Datarate; uint8_t maxPayload = 0; int8_t phyDr = 0; uint32_t frequency = rxConfig->Frequency; if( Radio.GetStatus( ) != RF_IDLE ) { return false; } if( rxConfig->RxSlot == RX_SLOT_WIN_1 ) { // Apply window 1 frequency frequency = NvmCtx.Channels[rxConfig->Channel].Frequency; // Apply the alternative RX 1 window frequency, if it is available if( NvmCtx.Channels[rxConfig->Channel].Rx1Frequency != 0 ) { frequency = NvmCtx.Channels[rxConfig->Channel].Rx1Frequency; } } // Read the physical datarate from the datarates table phyDr = DataratesAS923_2[dr]; Radio.SetChannel( frequency ); // Radio configuration if( dr == DR_7 ) { modem = MODEM_FSK; Radio.SetRxConfig( modem, 50000, phyDr * 1000, 0, 83333, 5, rxConfig->WindowTimeout, false, 0, true, 0, 0, false, rxConfig->RxContinuous ); } else { modem = MODEM_LORA; Radio.SetRxConfig( modem, rxConfig->Bandwidth, phyDr, 1, 0, 8, rxConfig->WindowTimeout, false, 0, false, 0, 0, true, rxConfig->RxContinuous ); } // Check for repeater support if( rxConfig->RepeaterSupport == true ) { maxPayload = MaxPayloadOfDatarateRepeaterDwell0AS923_2[dr]; } else { maxPayload = MaxPayloadOfDatarateDwell0AS923_2[dr]; } Radio.SetMaxPayloadLength( modem, maxPayload + LORA_MAC_FRMPAYLOAD_OVERHEAD ); *datarate = (uint8_t) dr; return true; } bool RegionAS923_2TxConfig( TxConfigParams_t* txConfig, int8_t* txPower, TimerTime_t* txTimeOnAir ) { RadioModems_t modem; int8_t phyDr = DataratesAS923_2[txConfig->Datarate]; int8_t txPowerLimited = LimitTxPower( txConfig->TxPower, NvmCtx.Bands[NvmCtx.Channels[txConfig->Channel].Band].TxMaxPower, txConfig->Datarate, NvmCtx.ChannelsMask ); uint32_t bandwidth = GetBandwidth( txConfig->Datarate ); int8_t phyTxPower = 0; // Calculate physical TX power phyTxPower = RegionCommonComputeTxPower( txPowerLimited, txConfig->MaxEirp, txConfig->AntennaGain ); // Setup the radio frequency Radio.SetChannel( NvmCtx.Channels[txConfig->Channel].Frequency ); if( txConfig->Datarate == DR_7 ) { // High Speed FSK channel modem = MODEM_FSK; Radio.SetTxConfig( modem, phyTxPower, 25000, bandwidth, phyDr * 1000, 0, 5, false, true, 0, 0, false, 4000 ); } else { modem = MODEM_LORA; Radio.SetTxConfig( modem, phyTxPower, 0, bandwidth, phyDr, 1, 8, false, true, 0, 0, false, 4000 ); } // Setup maximum payload lenght of the radio driver Radio.SetMaxPayloadLength( modem, txConfig->PktLen ); // Get the time-on-air of the next tx frame *txTimeOnAir = Radio.TimeOnAir( modem, txConfig->PktLen ); *txPower = txPowerLimited; return true; } uint8_t RegionAS923_2LinkAdrReq( LinkAdrReqParams_t* linkAdrReq, int8_t* drOut, int8_t* txPowOut, uint8_t* nbRepOut, uint8_t* nbBytesParsed ) { uint8_t status = 0x07; RegionCommonLinkAdrParams_t linkAdrParams; uint8_t nextIndex = 0; uint8_t bytesProcessed = 0; uint16_t chMask = 0; GetPhyParams_t getPhy; PhyParam_t phyParam; RegionCommonLinkAdrReqVerifyParams_t linkAdrVerifyParams; while( bytesProcessed < linkAdrReq->PayloadSize ) { // Get ADR request parameters nextIndex = RegionCommonParseLinkAdrReq( &( linkAdrReq->Payload[bytesProcessed] ), &linkAdrParams ); if( nextIndex == 0 ) break; // break loop, since no more request has been found // Update bytes processed bytesProcessed += nextIndex; // Revert status, as we only check the last ADR request for the channel mask KO status = 0x07; // Setup temporary channels mask chMask = linkAdrParams.ChMask; // Verify channels mask if( ( linkAdrParams.ChMaskCtrl == 0 ) && ( chMask == 0 ) ) { status &= 0xFE; // Channel mask KO } else if( ( ( linkAdrParams.ChMaskCtrl >= 1 ) && ( linkAdrParams.ChMaskCtrl <= 5 )) || ( linkAdrParams.ChMaskCtrl >= 7 ) ) { // RFU status &= 0xFE; // Channel mask KO } else { for( uint8_t i = 0; i < AS923_2_MAX_NB_CHANNELS; i++ ) { if( linkAdrParams.ChMaskCtrl == 6 ) { if( NvmCtx.Channels[i].Frequency != 0 ) { chMask |= 1 << i; } } else { if( ( ( chMask & ( 1 << i ) ) != 0 ) && ( NvmCtx.Channels[i].Frequency == 0 ) ) {// Trying to enable an undefined channel status &= 0xFE; // Channel mask KO } } } } } // Get the minimum possible datarate getPhy.Attribute = PHY_MIN_TX_DR; getPhy.UplinkDwellTime = linkAdrReq->UplinkDwellTime; phyParam = RegionAS923_2GetPhyParam( &getPhy ); linkAdrVerifyParams.Status = status; linkAdrVerifyParams.AdrEnabled = linkAdrReq->AdrEnabled; linkAdrVerifyParams.Datarate = linkAdrParams.Datarate; linkAdrVerifyParams.TxPower = linkAdrParams.TxPower; linkAdrVerifyParams.NbRep = linkAdrParams.NbRep; linkAdrVerifyParams.CurrentDatarate = linkAdrReq->CurrentDatarate; linkAdrVerifyParams.CurrentTxPower = linkAdrReq->CurrentTxPower; linkAdrVerifyParams.CurrentNbRep = linkAdrReq->CurrentNbRep; linkAdrVerifyParams.NbChannels = AS923_2_MAX_NB_CHANNELS; linkAdrVerifyParams.ChannelsMask = &chMask; linkAdrVerifyParams.MinDatarate = ( int8_t )phyParam.Value; linkAdrVerifyParams.MaxDatarate = AS923_2_TX_MAX_DATARATE; linkAdrVerifyParams.Channels = NvmCtx.Channels; linkAdrVerifyParams.MinTxPower = AS923_2_MIN_TX_POWER; linkAdrVerifyParams.MaxTxPower = AS923_2_MAX_TX_POWER; linkAdrVerifyParams.Version = linkAdrReq->Version; // Verify the parameters and update, if necessary status = RegionCommonLinkAdrReqVerifyParams( &linkAdrVerifyParams, &linkAdrParams.Datarate, &linkAdrParams.TxPower, &linkAdrParams.NbRep ); // Update channelsMask if everything is correct if( status == 0x07 ) { // Set the channels mask to a default value memset1( ( uint8_t* ) NvmCtx.ChannelsMask, 0, sizeof( NvmCtx.ChannelsMask ) ); // Update the channels mask NvmCtx.ChannelsMask[0] = chMask; } // Update status variables *drOut = linkAdrParams.Datarate; *txPowOut = linkAdrParams.TxPower; *nbRepOut = linkAdrParams.NbRep; *nbBytesParsed = bytesProcessed; return status; } uint8_t RegionAS923_2RxParamSetupReq( RxParamSetupReqParams_t* rxParamSetupReq ) { uint8_t status = 0x07; // Verify radio frequency if( VerifyRfFreq( rxParamSetupReq->Frequency ) == false ) { status &= 0xFE; // Channel frequency KO } // Verify datarate if( RegionCommonValueInRange( rxParamSetupReq->Datarate, AS923_2_RX_MIN_DATARATE, AS923_2_RX_MAX_DATARATE ) == false ) { status &= 0xFD; // Datarate KO } // Verify datarate offset if( RegionCommonValueInRange( rxParamSetupReq->DrOffset, AS923_2_MIN_RX1_DR_OFFSET, AS923_2_MAX_RX1_DR_OFFSET ) == false ) { status &= 0xFB; // Rx1DrOffset range KO } return status; } uint8_t RegionAS923_2NewChannelReq( NewChannelReqParams_t* newChannelReq ) { uint8_t status = 0x03; ChannelAddParams_t channelAdd; ChannelRemoveParams_t channelRemove; if( newChannelReq->NewChannel->Frequency == 0 ) { channelRemove.ChannelId = newChannelReq->ChannelId; // Remove if( RegionAS923_2ChannelsRemove( &channelRemove ) == false ) { status &= 0xFC; } } else { channelAdd.NewChannel = newChannelReq->NewChannel; channelAdd.ChannelId = newChannelReq->ChannelId; switch( RegionAS923_2ChannelAdd( &channelAdd ) ) { case LORAMAC_STATUS_OK: { break; } case LORAMAC_STATUS_FREQUENCY_INVALID: { status &= 0xFE; break; } case LORAMAC_STATUS_DATARATE_INVALID: { status &= 0xFD; break; } case LORAMAC_STATUS_FREQ_AND_DR_INVALID: { status &= 0xFC; break; } default: { status &= 0xFC; break; } } } return status; } int8_t RegionAS923_2TxParamSetupReq( TxParamSetupReqParams_t* txParamSetupReq ) { // Accept the request return 0; } uint8_t RegionAS923_2DlChannelReq( DlChannelReqParams_t* dlChannelReq ) { uint8_t status = 0x03; // Verify if the frequency is supported if( VerifyRfFreq( dlChannelReq->Rx1Frequency ) == false ) { status &= 0xFE; } // Verify if an uplink frequency exists if( NvmCtx.Channels[dlChannelReq->ChannelId].Frequency == 0 ) { status &= 0xFD; } // Apply Rx1 frequency, if the status is OK if( status == 0x03 ) { NvmCtx.Channels[dlChannelReq->ChannelId].Rx1Frequency = dlChannelReq->Rx1Frequency; } return status; } int8_t RegionAS923_2AlternateDr( int8_t currentDr, AlternateDrType_t type ) { // Only AS923_2_DWELL_LIMIT_DATARATE is supported return AS923_2_DWELL_LIMIT_DATARATE; } void RegionAS923_2CalcBackOff( CalcBackOffParams_t* calcBackOff ) { RegionCommonCalcBackOffParams_t calcBackOffParams; calcBackOffParams.Channels = NvmCtx.Channels; calcBackOffParams.Bands = NvmCtx.Bands; calcBackOffParams.LastTxIsJoinRequest = calcBackOff->LastTxIsJoinRequest; calcBackOffParams.Joined = calcBackOff->Joined; calcBackOffParams.DutyCycleEnabled = calcBackOff->DutyCycleEnabled; calcBackOffParams.Channel = calcBackOff->Channel; calcBackOffParams.ElapsedTime = calcBackOff->ElapsedTime; calcBackOffParams.TxTimeOnAir = calcBackOff->TxTimeOnAir; RegionCommonCalcBackOff( &calcBackOffParams ); } LoRaMacStatus_t RegionAS923_2NextChannel( NextChanParams_t* nextChanParams, uint8_t* channel, TimerTime_t* time, TimerTime_t* aggregatedTimeOff ) { uint8_t channelNext = 0; uint8_t nbEnabledChannels = 0; uint8_t delayTx = 0; uint8_t enabledChannels[AS923_2_MAX_NB_CHANNELS] = { 0 }; TimerTime_t nextTxDelay = 0; if( RegionCommonCountChannels( NvmCtx.ChannelsMask, 0, 1 ) == 0 ) { // Reactivate default channels NvmCtx.ChannelsMask[0] |= LC( 1 ) + LC( 2 ); } TimerTime_t elapsed = TimerGetElapsedTime( nextChanParams->LastAggrTx ); if( ( nextChanParams->LastAggrTx == 0 ) || ( nextChanParams->AggrTimeOff <= elapsed ) ) { // Reset Aggregated time off *aggregatedTimeOff = 0; // Update bands Time OFF nextTxDelay = RegionCommonUpdateBandTimeOff( nextChanParams->Joined, nextChanParams->DutyCycleEnabled, NvmCtx.Bands, AS923_2_MAX_NB_BANDS ); // Search how many channels are enabled nbEnabledChannels = CountNbOfEnabledChannels( nextChanParams->Joined, nextChanParams->Datarate, NvmCtx.ChannelsMask, NvmCtx.Channels, NvmCtx.Bands, enabledChannels, &delayTx ); } else { delayTx++; nextTxDelay = nextChanParams->AggrTimeOff - elapsed; } if( nbEnabledChannels > 0 ) { for( uint8_t i = 0, j = randr( 0, nbEnabledChannels - 1 ); i < AS923_2_MAX_NB_CHANNELS; i++ ) { channelNext = enabledChannels[j]; j = ( j + 1 ) % nbEnabledChannels; // Perform carrier sense for AS923_2_CARRIER_SENSE_TIME // If the channel is free, we can stop the LBT mechanism if( Radio.IsChannelFree( MODEM_LORA, NvmCtx.Channels[channelNext].Frequency, AS923_2_RSSI_FREE_TH, AS923_2_CARRIER_SENSE_TIME ) == true ) { // Free channel found *channel = channelNext; *time = 0; return LORAMAC_STATUS_OK; } } return LORAMAC_STATUS_NO_FREE_CHANNEL_FOUND; } else { if( delayTx > 0 ) { // Delay transmission due to AggregatedTimeOff or to a band time off *time = nextTxDelay; return LORAMAC_STATUS_DUTYCYCLE_RESTRICTED; } // Datarate not supported by any channel, restore defaults NvmCtx.ChannelsMask[0] |= LC( 1 ) + LC( 2 ); *time = 0; return LORAMAC_STATUS_NO_CHANNEL_FOUND; } } LoRaMacStatus_t RegionAS923_2ChannelAdd( ChannelAddParams_t* channelAdd ) { bool drInvalid = false; bool freqInvalid = false; uint8_t id = channelAdd->ChannelId; if( id < AS923_2_NUMB_DEFAULT_CHANNELS ) { return LORAMAC_STATUS_FREQ_AND_DR_INVALID; } if( id >= AS923_2_MAX_NB_CHANNELS ) { return LORAMAC_STATUS_PARAMETER_INVALID; } // Validate the datarate range if( RegionCommonValueInRange( channelAdd->NewChannel->DrRange.Fields.Min, AS923_2_TX_MIN_DATARATE, AS923_2_TX_MAX_DATARATE ) == false ) { drInvalid = true; } if( RegionCommonValueInRange( channelAdd->NewChannel->DrRange.Fields.Max, AS923_2_TX_MIN_DATARATE, AS923_2_TX_MAX_DATARATE ) == false ) { drInvalid = true; } if( channelAdd->NewChannel->DrRange.Fields.Min > channelAdd->NewChannel->DrRange.Fields.Max ) { drInvalid = true; } // Check frequency if( freqInvalid == false ) { if( VerifyRfFreq( channelAdd->NewChannel->Frequency ) == false ) { freqInvalid = true; } } // Check status if( ( drInvalid == true ) && ( freqInvalid == true ) ) { return LORAMAC_STATUS_FREQ_AND_DR_INVALID; } if( drInvalid == true ) { return LORAMAC_STATUS_DATARATE_INVALID; } if( freqInvalid == true ) { return LORAMAC_STATUS_FREQUENCY_INVALID; } memcpy1( ( uint8_t* ) &(NvmCtx.Channels[id]), ( uint8_t* ) channelAdd->NewChannel, sizeof( NvmCtx.Channels[id] ) ); NvmCtx.Channels[id].Band = 0; NvmCtx.ChannelsMask[0] |= ( 1 << id ); return LORAMAC_STATUS_OK; } bool RegionAS923_2ChannelsRemove( ChannelRemoveParams_t* channelRemove ) { uint8_t id = channelRemove->ChannelId; if( id < AS923_2_NUMB_DEFAULT_CHANNELS ) { return false; } // Remove the channel from the list of channels NvmCtx.Channels[id] = ( ChannelParams_t ){ 0, 0, { 0 }, 0 }; return RegionCommonChanDisable( NvmCtx.ChannelsMask, id, AS923_2_MAX_NB_CHANNELS ); } void RegionAS923_2SetContinuousWave( ContinuousWaveParams_t* continuousWave ) { int8_t txPowerLimited = LimitTxPower( continuousWave->TxPower, NvmCtx.Bands[NvmCtx.Channels[continuousWave->Channel].Band].TxMaxPower, continuousWave->Datarate, NvmCtx.ChannelsMask ); int8_t phyTxPower = 0; uint32_t frequency = NvmCtx.Channels[continuousWave->Channel].Frequency; // Calculate physical TX power phyTxPower = RegionCommonComputeTxPower( txPowerLimited, continuousWave->MaxEirp, continuousWave->AntennaGain ); Radio.SetTxContinuousWave( frequency, phyTxPower, continuousWave->Timeout ); } uint8_t RegionAS923_2ApplyDrOffset( uint8_t downlinkDwellTime, int8_t dr, int8_t drOffset ) { // Initialize minDr for a downlink dwell time configuration of 0 int8_t minDr = DR_0; // Update the minDR for a downlink dwell time configuration of 1 if( downlinkDwellTime == 1 ) { minDr = AS923_2_DWELL_LIMIT_DATARATE; } // Apply offset formula return MIN( DR_7, MAX( minDr, dr - EffectiveRx1DrOffsetAS923_2[drOffset] ) ); } void RegionAS923_2RxBeaconSetup( RxBeaconSetup_t* rxBeaconSetup, uint8_t* outDr ) { RegionCommonRxBeaconSetupParams_t regionCommonRxBeaconSetup; regionCommonRxBeaconSetup.Datarates = DataratesAS923_2; regionCommonRxBeaconSetup.Frequency = rxBeaconSetup->Frequency; regionCommonRxBeaconSetup.BeaconSize = AS923_2_BEACON_SIZE; regionCommonRxBeaconSetup.BeaconDatarate = AS923_2_BEACON_CHANNEL_DR; regionCommonRxBeaconSetup.BeaconChannelBW = AS923_2_BEACON_CHANNEL_BW; regionCommonRxBeaconSetup.RxTime = rxBeaconSetup->RxTime; regionCommonRxBeaconSetup.SymbolTimeout = rxBeaconSetup->SymbolTimeout; RegionCommonRxBeaconSetup( ®ionCommonRxBeaconSetup ); // Store downlink datarate *outDr = AS923_2_BEACON_CHANNEL_DR; }